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Cortical thickness correlation across individuals has been observed. So far, it remains unclear to what extent
such a correlation in thickness is a reflection of underlying fiber connection. Here we explicitly compared the
patterns of cortical thickness correlation and diffusion-based fiber connection across the entire cerebral cor-
tex, in 95 normal adults. Interregional thickness correlations were extracted by using computational neuro-
anatomy algorithms based on structural MRI, and diffusion connections were detected by using diffusion
probabilistic tractography. Approximately 35–40% of thickness correlations showed convergent diffusion
connections across the cerebral cortex. Intriguingly, the observed convergences between thickness correla-
tion and diffusion connection are mostly focused on the positive thickness correlations, while almost all of
the negative correlations (N90%) did not have a matched diffusion connection, suggesting different mecha-
nisms behind the positive and negative thickness correlations, the latter not being mediated by a direct
fiber pathway. Furthermore, graph theoretic analysis reveals that the thickness correlation network has a
more randomized overall topology, whereas the nodal characteristics of cortical regions in these two net-
works are statistically correlated. These findings indicate that thickness correlations partly reflect underlying
fiber connections but they contains exclusive information, and therefore should not be simply taken as a
proxy measure for fiber connections.
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Introduction

The inter-subject variability of brain morphometric features has
been quantitatively reported, using both neuroimaging and postmor-
tem data (Li et al., 2010; Thompson et al., 1996; Zilles et al., 1997). In-
triguingly, the morphometric variability across individuals is not
uniquely present but shows similar patterns among various areas,
suggesting a structural association/interaction of these areas in
some aspect. For instance, Mechelli et al. (2005) have reported co-
variance of gray matter density between multiple bilateral homotopic
regions across adult population. Also, our group demonstrated signif-
icant thickness correlations within the cerebral cortex (Lerch et al.,
2006), e.g. between Broca's and Wernicke's area that are well-
known as language-related areas. Particularly, further studies from
our laboratory found altered patterns of interregional thickness cor-
relation under abnormal brain conditions such as Alzheimer's disease
(He et al., 2008) and multiple sclerosis (He et al., 2009).

So far, the biological mechanisms underlying the thickness corre-
lation among cortical areas remain unclear. One speculation is that re-
lated areas covary morphometrically as a result of mutually trophic
effects that are mediated by direct axonal connections (Ferrer et al.,
1995; Mechelli et al., 2005). This hypothesis implies that cortical
thickness correlation should reflect an underlying fiber connection
between the two areas and therefore leads to the expectation of con-
vergence between these two measures. There has been some evi-
dence supporting this expectation. For instance, Lerch et al. (2006)
showed that the pattern of thickness correlation for Brodmman area
44 is similar to the tractography map obtained from previous diffu-
sion tensor imaging (DTI) studies. In addition, He et al. (2007)
reported that the 15 regional pairs showing the most significant
thickness correlations correspond with known white matter tracts
according to previous neuroanatomy literature. However, the nature
of relationship between thickness correlation and underlying ana-
tomical connectivity has not yet been explicitly studied in the same
population. In particular, while the convergence of thickness correla-
tions with fiber connections has been demonstrated between specific
regions-of-interest, it is not known if this convergence could be gen-
eralized across the entire cerebral cortex.

Once interregional thickness correlations are obtained for all pos-
sible regional pairs, the cerebral cortex could be characterized as a
structural network in which each cortical area represents a network
node and two nodes/areas are considered connected if they have sig-
nificant correlations of thickness across individuals (He et al., 2007).
Graph theoretical analysis on the thickness correlation network in

http://dx.doi.org/10.1016/j.neuroimage.2011.08.017
mailto:alan@bic.mni.mcgill.ca
http://dx.doi.org/10.1016/j.neuroimage.2011.08.017
http://www.sciencedirect.com/science/journal/10538119


1240 G. Gong et al. / NeuroImage 59 (2012) 1239–1248
healthy adults has revealed attractive topological properties such as
small-worldness and modular structure (Chen et al., 2008; He et al.,
2007). Further studies have demonstrated significant network alter-
ations that are specific to different brain diseases such as Alzheimer's
disease (He et al., 2008) and multiple sclerosis (He et al., 2009). Sim-
ilarly, Bassett et al. (2008) reported topological changes of gray mat-
ter volume correlation network in schizophrenia patients, as
compared to normal controls. Meanwhile, the topology of human
brain diffusion networks has been investigated in-vivo, using diffu-
sion MRI tractography (Hagmann et al., 2008; Iturria-Medina et al.,
2008; Lo et al., 2010; Wen et al., 2011). Our group have developed a
population-based cortical diffusion network using deterministic dif-
fusion tractography (Gong et al., 2009b) and further extended it to
allow for an individual-based cortical network using probabilistic
tractography recently (Gong et al., 2009a). However, it remains un-
known how the topology of the thickness correlation network is asso-
ciated with the diffusion-based network.

In this study, we will systematically compare the patterns of corti-
cal thickness correlation and diffusion connection across the entire
cerebral cortex, which aims to clarify that whether cortical thickness
correlation could be simply taken as a proxy observation of underly-
ing fiber connections or it actually contains exclusive information
representing an important aspect of interregional association/interac-
tion not evident from diffusion MRI studies of fiber pathways.

Method

Subjects

The present study included data from 95 normal subjects (males,
47; females, 48; age, 19–85 years) (Gong et al., 2009a). All subjects
were recruited for the International Consortium of Brain Mapping
(ICBM) dataset at Montreal Neurological Institute (MNI) and have
no history of neurological and psychiatric disorders. Our protocol
was approved by the Research Ethics Committee of the Montreal
Neurological Institute and Hospital. Informed consent was obtained
from each subject.

MRI acquisition

All scans were performed on the same Siemens Sonata 1.5 T MRI
scanner. Diffusion MRI was acquired by using a single-shot echo pla-
nar imaging-based sequence with sensitivity encoding and a parallel
imaging factor of 2.0: coverage of the whole brain; 2.5 mm slice thick-
ness with no inter-slice gap; 60 axial slices; repetition time (TR),
8000 ms; echo time (TE), 94 ms; 30 optimal nonlinear diffusion
weighting directions with b=1000 s/mm2 and five additional images
without diffusion weighting (i.e., b=0 s/mm2); average, 3; acquisi-
tion matrix, 96×96; field of view (FOV), 240×240 mm2. Three-
dimensional T1-weighted images with high resolution were obtained
by a three dimensional gradient echo sequence with following pa-
rameters: 1 mm slice thickness with no interslice gap; 117 sagittal
slices; TR, 22 ms; TE, 9.2 ms; flip angle, 30°; average, 1; acquisition
matrix, 256×256; FOV, 256×256 mm2.

Cortical parcellation

In this study, the automated anatomical labeling (AAL) template
(Tzourio-Mazoyer et al., 2002) was used to parcellate the entire cere-
bral cortex into 78 cortical regions (39 for each hemisphere), each
representing a node of the cortical network. For each subject, theparcel-
lation was conducted in the MRI native space. Specifically, the T1-
weighted image was first coregistered to the b0 image in the diffusion
MRI space using a linear transformation. T1-weighted MR image was
then nonlinearly mapped to the T1 template of ICBM152 in MNI space
(Collins et al., 1994). The resulting transformation was inverted and
further applied to warp the AAL mask from MNI space to the T1-
weighted MRI and diffusion MRI native space in which the discrete la-
beling values were preserved by using a nearest-neighbor interpolation
method. This parcellation procedure has been applied previously (Gong
et al., 2009b). Specifically, the linear and nonlinear registrations were
implemented using the MNI registration tool (Collins et al., 1994).

Regional cortical thickness correlation and network from structural MRI

The T1-weighted MR images were first registered into stereotaxic
space, using a 9-parameter linear transformation. Images were cor-
rected for non-uniformity artifacts using the N3 algorithm (Sled et
al., 1998). The registered and corrected images were further segment-
ed into graymatter, white matter, cerebrospinal fluid and background
using a neural net classifier (Tohka et al., 2004; Zijdenbos et al., 2002).
The inner and outer gray matter surfaces were then automatically
extracted from each hemisphere using the CLASP algorithm (Kim et
al., 2005; MacDonald et al., 2000). Cortical thickness was measured
in native space using the linked distance (i.e. t-link) (Lerch and
Evans, 2005) between the two surfaces at 40,962 vertices per hemi-
sphere. The cortical thickness algorithm has been validated using
both manual measurements (Kabani et al., 2001) and simulation ap-
proaches (Lee et al., 2006; Lerch and Evans, 2005). Using the generat-
ed AAL masks above, we divided the surface into 78 regions (Fig. 1a).
For each subject, regional cortical thickness was defined as the aver-
age thickness of all vertices belonging to that region. A linear regres-
sion analysis was performed at every cortical region to remove the
effects of multiple confounding variables: age, gender, and overall
mean cortical thickness (He et al., 2007). The residuals of this regres-
sion were used to substitute for the raw cortical thickness values of
each region. The Kolmogorov–Smirnov (KS) test on the residuals
showed a p-value of 0.13, suggesting a normal distribution. The
inter-regional symmetric correlation matrix Rij (78×78) was then
constructed by calculating the Pearson correlation coefficients across
the 95 individuals between the cortical thicknesses of every regional
pair. To estimate the variance of this matrix across different sampling
populations, we generated 1000 bootstrap samples (95 subjects for
each sample) by resampling with replacement from our 95 individ-
uals (Efron and Tibshirani, 1993) and then computed the thickness
correlation matrix for each bootstrap sample, using the same proces-
sing pipeline.

Regional diffusion connection and network from diffusion tractography

The estimation of regional diffusion-based anatomical connectivi-
ty using probabilistic tractography has been previously described
(Gong et al., 2009a). Briefly, the diffusion-weighted images were
first coregistered to a reference volume (i.e., the b0 image) using an
affine transformation for the correction of head motion and eddy
current-induced image distortion. Secondly, the local probability dis-
tribution of fiber direction was estimated at each voxel (Behrens et
al., 2003a,b). Probabilistic tractography was then applied with a com-
putation model allowing for automatic estimation of two fiber direc-
tions within each voxel. The connectivity probability from the seed
region i to another region j was then defined by the number of fibers
passing through region j divided by the total number of fibers sam-
pled from region i (Behrens et al., 2007). Each AAL cortical region in
turn was selected as the seed region and its connectivity probability
to each of the other 77 regions was estimated. Notably, the probabil-
ity from region i to j is not necessarily equivalent to the one from j to i
because of the tractography dependence on the seeding location.
However, these two probabilities are highly correlated across the ce-
rebral cortex for all subjects (the least Pearson R=0.70, p=10−50).
Thus, we defined the undirectional connectivity probability between
region i and j by averaging these two probabilities. Taken together,
one 78×78 symmetric cortical diffusion network was yielded for



Fig. 1. The schematic processing for constructing both thickness correlation and diffusion networks. (a) The AAL template masks on the cortical surface. Each color represents one
cortical region (78 in total); (b) The matrix of Pearson correlation coefficient in regional cortical thickness across the 95 individual, after factoring out the age, gender and mean
cortical thickness; (c) The binarized matrix of thickness correlation using sparsity-based thresholding approach; (d) The population-averaged probability matrix of diffusion con-
nections derived from diffusion MRI tractography; (e) The binarized matrix of diffusion connection after thresholding with the same sparsity value of (c). The order of cortical re-
gions in the matrices is consistent with our previous study (Gong et al., 2009a,b). For more details, please see Method.
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each subject, representing the fiber connectivity organization of the
entire cerebral cortex (Gong et al., 2009a). Since the thickness corre-
lation map is derived from the whole population, we averaged the
diffusion connectivity probability across the 95 individuals for each
regional pair, leading to a representative diffusion matrix for the
whole population. Notably, the diffusion connectivity probability of
the individual networks is highly correlated with the group diffusion
networks (the least Pearson R=0.93, p=10−100). Also, the network
topology of the group diffusion network nicely captures the patterns
of individual networks (see Fig. 7). Unless otherwise specified, the
diffusion network in this study refers to mean diffusion network
across the population. Likewise, we also generated 1000 mean diffu-
sion networks for the 1000 bootstrap samples that were described
above. Notably, for each bootstrap sample, the thickness correlation
and mean diffusion network were computed from the same set of
subjects and therefore are comparable in pairs.

Comparison of thickness correlation and diffusion connectivity

The above procedures result in one 78×78 symmetric correlation
matrix for cortical thickness and one 78×78 symmetric probability
matrix for diffusion connectivity across the whole population. For
conceptual simplicity, our present study will focus on a presence/ab-
sence pattern (i.e. binary pattern) of thickness correlations and diffu-
sion connections. Similar to previous studies (Achard and Bullmore,
2007; Bassett et al., 2008; He et al., 2008), we here employed a
sparsity-based thresholding approach, where the sparsity was de-
fined as the ratio of the number of actual connections to the number
of possible connections (78∗(78−1)/2=3003) within the network.
For example, threshold of sparsity 10% will result in the set of connec-
tions (3003∗10%≈300) with highest absolute values in the entire
network. Specifically, we applied the same sparsity threshold to
both matrices, ensuring the same number of supra-threshold regional
pairs for both modalities. Since there is no definitive choice for a
single threshold, we identified a thresholding range yielding a fully
connected cortical network with a small-world topology (i.e.
sigmaN1.2), as previously proposed by Bassett et al. (2008). Here,
the sparsity range of 4.4%–56.5% and 8.9%–25.2% satisfy the criterion
of “a fully connected network with a small-world topology” for the
diffusion network and thickness correlation network, respectively.
We therefore chose the overlapping range 8.9%–25.2% as the final
sparsity range in the present study. Notably, the binarizing step for
DN construction has naturally removed out the effects of aging and
sex on the network topology, given the empirical assumption that
the macroscopic pattern of fiber connections (although not the con-
nection strengths) is largely fixed across the normal adult population.

We further defined the similarity metric (SM) of distribution be-
tween the two modalities as the ratio of the number of regional
pairs that were in agreement by simultaneously showing presence
or absence of a connection in both modalities (Nagree) to the number
of all possible regional pairs (Ntotal):

SM ¼ Nagree

Ntotal

Here, regional pairs with a thickness correlation connection or dif-
fusion connection represent the ones surviving the threshold of the
thickness correlation or diffusion connection at a selected network
sparsity. Also, we computed the percentage of convergence (PC) by
dividing the number of convergent regional pairs (Ncon) by the num-
ber of all supra-threshold regional pairs (Nsupra, identical for both mo-
dalities due to the same sparsity):

PC ¼ Ncon

Nsupra

The SM and PC indices were analyzed as a function of sparsity.
We found these two metrics are significantly correlated (R=0.5,



Fig. 2. The distribution similarity in between thickness correlation and diffusion connec-
tion. (a) Similarity metric (SM) as a function of sparsity; (b) Percentage of convergence
(PC) as a function of sparsity. The statistics of SM and PC (mean and STD, black line) be-
tween thickness correlation and diffusion connectionwere estimated from the 1000 boot-
strap samples (BS). The uncorrected p=0.05 for the thickness correlationwasmarked out
(i.e. sparsity of 18.6%). As shown, the observed values of SM and PC from the raw 95 sub-
jects (green line) are very close to the mean of BS. The statistic of SM and PC (mean and
STD, blue line) expected by chancewere estimated from simulated 1000 random samples
(RS). Clearly, the SM and PC are significantly higher than expected by chance over the en-
tire range of sparsity.
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p=10−7) across the sparsity range. In addition, two random binary
matrices with the same sparsity were generated 1000 times to esti-
mate the SM and PC that would be expected by chance. Finally,
since thickness correlation could be positive or negative, we further
subdivided these indices for positive or negative thickness correla-
tions only.

Comparison of network topological properties

Previous studies have demonstrated the small-world topology of
both diffusion and thickness correlation networks, characterized by
highly efficient information transfer both locally and globally (Gong
et al., 2009b; He et al., 2007; Iturria-Medina et al., 2008). The small-
world topology was originally proposed by Watts and Strogatz
(1998) by using two classic graph parameters: clustering coefficient
(Luce and Perry, 1949) and characteristic path length (Dijkstra,
1959). This concept was then generalized by introducing network ef-
ficiency that has a number of conceptual and technical advantages
(Achard and Bullmore, 2007; Latora and Marchiori, 2003). Conceptu-
ally, the local clustering C and characteristic path length L correspond
to the local and global efficiency of the network, respectively. Specif-
ically, the inverse of the harmonic mean of shortest path length (dij)
between each pair of nodes within the network is defined as the net-
work global efficiency Eglob:

Eglob Gð Þ ¼ 1
N N−1ð Þ ∑

i≠ j∈ G

1
dij

Furthermore, the local efficiency for each node could be calculated
as the global efficiency of the neighborhood subgraph Gi of the node.
Theoretically, the local efficiency represents how much the complex
network is fault-tolerant, indicating howwell the information is com-
municated within the neighbors of a given node when this node is re-
moved. The local efficiencies across all nodes within the network are
further averaged to estimate the network local efficiency Eloc:

Eloc Gð Þ ¼ 1
N

∑
i∈ G

Eglob Gið Þ

The regional efficiency (Ereg) for a given node is defined as the in-
verse of mean harmonic shortest path length between this node and
all other nodes in the network (Achard and Bullmore, 2007):

Ereg ið Þ ¼ 1
N−1

∑
i≠j∈G

1
dij

Since each of these network metrics has been computed for a spe-
cific sparsity range, a summary network metric is necessary. Here, we
estimated the integrals of each metric curve over the range of the
sparsity (8.9%–25.2%) as the summary metric. Such integrated met-
rics mathematically correspond to the areas under the metric curve
and have been applied in recent brain network studies (Bassett et
al., 2008; Gong et al., 2009a; He et al., 2007, 2008).

Results

Convergence of thickness correlation with diffusion connection across the
cerebral cortex

The SM and PC between cortical thickness correlation and diffu-
sion connection across the entire cerebral cortex are specific to the
choice of the sparsity threshold and therefore have been plotted as
a function of sparsity (Fig. 2). In the present study, we computed
SM and PC for each bootstrap sample. The resulting sampling sets
(sample size=1000) of SM and PC could be used to estimate statis-
tics such as mean and standard deviation (STD) for SM and PC.
Notably, the mean SM and PC of the bootstrap samples are very
close to the SM and PC of the real 95 individuals over the entire
range of sparsity, which is expected according to the bootstrapping
theory (Efron and Tibshirani, 1993). Additionally, we calculated SM
and PC for 1000 simulated pairs of random networks, representing
the SM and PC values expected by chance. When more connections
are present, a random network tends to be less agreed with another
one (lower SM) but the percentage of convergence increases (higher
PC), as shown in Fig. 2. Clearly, the SM and PC indices between thick-
ness correlation and diffusion connection are significantly higher than
expected by chance over the entire range of sparsity (two sample t-
test, the maximum p=10−100 for SM, and p=10−100 for PC ), indi-
cating that thickness correlation and diffusion connection are not in-
dependently distributed across the cerebral cortex. However, only
35–40% of thickness correlations (Fig. 2b) have matched diffusion
connections, which are compatible with poor rank correlation of
weights between the twomodalities across all regional pairs (Supple-
mentary Fig. 1). These results suggest that a more complicated biolog-
ical mechanism underlies thickness correlation across the entire
cerebral cortex.

image of Fig.�2


Fig. 4. Positive (a) and negative (b) thickness correlation matrix at the sparsity of 8.9%.
In both (a) and (b), red or blue indicate the thickness correlation convergent or diver-
gent with diffusion connection, respectively. Notably, the convergence between thick-
ness correlation and diffusion connection appears only in the positive thickness
correlations at this sparsity.

1243G. Gong et al. / NeuroImage 59 (2012) 1239–1248
For deeper investigation, we examined the network at the lower
limit of sparsity threshold (i.e. 8.9%). This lower limit of sparsity
threshold results in the set of strongest/reliable thickness correlation
or diffusion connection. The most reliable convergent regional pairs
between these two modalities were visualized in Fig. 3, showing the
majority of them are between ipsilateral or bilateral homotopic re-
gions (Supplementary Table 2). Furthermore, these reliable conver-
gences are between regions with a relatively short spatial distance.

Positive and negative thickness correlation across the cerebral cortex

Thickness correlations across the cerebral cortex have two direc-
tions: positive or negative (Fig. 4). As shown in Fig. 5a, there is no dra-
matic disproportion between positive and negative correlation over
the entire sparsity range: approximately 40%–60% correlations are
positive or negative depending on the sparsity. We further found
that most negative correlations (around 80%) are between bilateral
heterotopic (i.e. inter-hemispheric and inhomogeneous) regions,
but positive correlations are mostly among ipsilateral (i.e. intra-
hemispheric) or bilateral homotopic (i.e. inter-hemispheric and ho-
mogeneous) regions (Fig. 5b). Intriguingly, the convergence between
thickness correlation and diffusion connection is largely confined to
positive cortical correlations (Figs. 4 and 5c). About 60% of positive
thickness correlations showed convergence with the diffusion con-
nection over the sparsity range, whereas almost all (N90%) of the neg-
ative correlations were divergent with the diffusion connection. Such
a dramatic contrast between positive and negative correlation sug-
gests that different mechanisms underlie the positive and negative
thickness correlation, the latter not being mediated by a direct fiber
pathway.

Topological properties of the thickness correlation network (TCN) and
diffusion network (DN)

The local and global efficiencies for both cortical networks as well
as their matched random networks are calculated, as a function of the
network sparsity. Specifically, 1000 matched random networks were
generated at each sparsity using the random rewiring procedure de-
scribed by Maslov and Sneppen (2002) that preserves the degree dis-
tribution. Compared with the matched random networks, both
cortical networks showed a much higher local efficiency but similar
global efficiency over the entire range of sparsity, indicating a small-
world character for both cortical networks (Supplementary Fig. 2).
As shown in Fig. 6, the TCN exhibited significantly higher global effi-
ciency but much lower local efficiency than the DN over the range
Fig. 3. The regional pairs showing reliable convergence between thickness correlation and diffusion connection (sparsity: 8.9%). Each green spot represents the center of an AAL
region. The regional pairs with both thickness correlation and diffusion connection are linked by a red line. As shown, the majority of the convergence is between ipsilateral or bi-
lateral homotopic regions that have relatively short distance. Importantly, all the regional pairs here are positively correlated in thickness, according to Fig. 4.
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Fig. 5. Statistics-of-interest as a function of sparsity. (a) Percentage of positive thickness
correlation relative to all thickness correlations. There is no dramatic disproportion be-
tween positive thickness correlation (PTC) and negative thickness correlation (NTC)
over the range of sparsity. (b) Percentage of bilateral heterotopic regional pairs in PTC
and NTC, respectively. As shown,majority (~80%) of NTC are between bilateral heterotop-
ic regions, while PTC mostly (N80%) links ipsilateral or bilateral homotopic regions. (c)
Percentage of PTC and NTC convergent with diffusion connections (DC), respectively.
Strikingly, almost all NTC (N90%) are divergentwith DC across the entire range of sparsity.
The mean and STD of all these statistics were estimated from the 1000 bootstrap samples
(BS). The uncorrected p=0.05 for the thickness correlation was marked out (i.e. sparsity
of 18.6%). Again, the observed values from the raw 95 subjects (green line) are very close
to the mean of BS for all the statistics.

Fig. 6. The comparison of network efficiency between thickness correlation network
(TCN) and diffusion networks (DN). (a) The global efficiency of both networks as a
function of sparsity; (b) The local efficiency of both networks as a function of sparsity.
The uncorrected p=0.05 for the thickness correlation was marked out (i.e. sparsity of
18.6%). The mean and STD of both global and local efficiency for both networks were
estimated from the 1000 bootstrap samples (BS). Likewise, the observed values from
the raw 95 subjects are very close to the mean of BS. Clearly, the global efficiency of
TCN is significantly higher (the maximum p=10−100), but the local efficiency is signif-
icantly lower than DN over the entire range of sparsity (the maximum p=10−100).
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of sparsity (paired t-test: the maximum p=10−100 for local efficien-
cy, and the maximum p=10−100 for global efficiency). Consequently,
the integrated local and global efficiencies also showed significant dif-
ferences between TCN and DN (paired t-test: p=10−100). It should
be noted that above comparative results between the group DN and
TCN capture well the patterns of convergence and divergence be-
tween individual DN and the TCN (Fig. 7).

The regional efficiency of each node quantifies its connectivity to
all other nodes of the network and therefore high regional efficiency
implies a hub role for that node in the network. Here, we specifically
reported the results of the integrated Ereg over the sparsity range for
each node. As done previously (Gong et al., 2009b), regions were
identified as the hubs in both cortical networks if their integrated
Ereg were at least one standard deviation (STD) greater than the aver-
age Ereg of the network (Table 1 and Fig. 8; for all cortical regions, see
Supplementary Table 3.). While there are significant differences in
hub regions between these two modal networks, left precuneus and
superior parietal gyrus are identified as hub regions in both networks.
Notably, the majority of the hub regions in both networks belong to
association cortex (Table 1 and Fig. 8). Despite the difference of hub

image of Fig.�5
image of Fig.�6


Fig. 7. The comparison between individual DN and TCN. (a) Similarity metric (SM) and (b) Percentage of convergence (PC) between individual DN and TCN as a function of sparsity.
Each black line indicates one individual DN, and the green line represents the group-averaged DN. (c) Percentage of convergence with diffusion connections for positive and neg-
ative thickness correlations, where individual DN was indicated by black lines and the group-averaged DN was indicated by the red and green line, respectively. (d) Comparison of
global efficiency and (e) local efficiency for individual DN (indicated by black lines) and the group-averaged DN (indicated by the red lines), where the green line represents the
network efficiency of TCN. Evidently, the comparative results between the group-averaged DN and TCN capture well the patterns of convergence and divergence between individ-
ual DN and the TCN.
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regions in both networks, the integrated regional efficiencies across
all nodes showed statistically significant positive correlation
(R=0.4, p=0.0006) between these two modalities, as demonstrated
in Fig. 9, suggesting an intrinsic similarity of network topology. The
same procedure has been applied to the nodal local efficiency but
no significant correlation (R=−0.11, p=0.32) was found between
the two networks.

Discussion

In this study, cortical thickness correlation and diffusion connec-
tivity based on tractography have been compared quantitatively in
the same population. A markedly different pattern of concordance
Table 1
The cortical hub regions (integrated regional efficiencies (Ereg)Nmean+STD) for both
thickness correlation (TCN) and diffusion network (DN).

Rank (Ereg) Hubs inTCN Class Hubs in DN Class

1 SPG.R Association PCUN.R Association
2 PCUN.L Association PCUN.L Association
3 SOG.R Association PCG.R Paralimbic
4 MOG.R Association INS.L Paralimbic
5 CUN.R Association SFGdor.L Association
6 DCG.L Paralimbic DCG.R Paralimbic
7 SFGmed.L Association ACG.R Association
8 SPG.L Association SPG.L Association
9 ITG.R Association CAL.R Primary
10 FFG.L Association ORBsup.L Paralimbic
11 ITG.L Association OLF.R Association
12 PCR.R Association

The cortical regions were ranked in the order of descending integrated Ereg for both
cortical networks. L and R represent left and right, respectively. These hub regions
have also been displayed on the cortical surface (Fig. 8). As shown, left precuneus
(PUN) and superior parietal gyrus (SPG) have high regional efficiency in both
modalities. In addition, the majority of these hub regions in both networks
consistently belong to association cortex. For the integrated Ereg of all nodes, please
see Supplementary Table 3.
with the diffusion connectivity was observed for positive thickness
correlation as compared with negative thickness correlation. Further-
more, using graph theoretic approaches, we found that the TCN has a
more randomized overall topology as compared to the DN, whereas
the nodal efficiency of cortical regions is significantly correlated be-
tween these two modalities.

Thickness correlations vs diffusion connections

Cortical thickness is influenced by multiple factors, including the
number, size and myelination of neurons in the cortical columns
(Panizzon et al., 2009; Rakic, 1988). The covariance of thickness
among various cortical areas thus indicates a synchronization in
changes of the local morphology among these areas. So far, the bio-
logical cause behind this phenomenon remains undefined. It has
been speculated that various brain areas covary as a result of mutual-
ly trophic effects that are mediated by direct underlying axonal con-
nections. For instance, neuronal survival and dendritic volume could
be promoted in the adult brain by neurotrophic factors such as
BDNF and glutamatergic signaling via the NMDA receptor (Burgoyne
et al., 1993; Monfils et al., 2004). This trophic theory implies conver-
gence between thickness correlation and diffusion connection among
areas. In accordance, thickness correlations among fiber-connected
regions have been observed. For instance, most bilateral homotopic
regional pairs that are fiber-connected via the corpus callosum have
shown significant thickness correlations (He et al., 2007), a feature
that is also observed in our present study. Previous optimized
voxel-based morphometry (VBM) studies also demonstrated correla-
tion of gray matter density between bilateral homotopic regions
(Mechelli et al., 2005). Specifically, Lerch et al. (2006 reported that
the pattern of thickness correlation seeding from left inferior frontal
area (i.e. Brodmman area 44) is similar to the tractography map of
the arcuate fasciculus. However, our data showed that only 35–40%
of all regional pairs have convergent thickness correlation and diffu-
sion connection (Fig. 2b).
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Fig. 8. The hub regions for both TCN (a) and DN (b). Only hub regions (Table 1) are marked on the cortical surface map. The color indicates the integrated regional efficiency (Ereg).
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As expected, our data demonstrated a degree of agreement between
thickness correlation and diffusion connection that is higher than
expected by chance (Fig. 2a). However, the substantial proportion of di-
vergence (more than 60%) indicates that thickness correlation cannot
be simply considered as a proxy measure for diffusion connection.
There must be other factors as well underlying interregional thickness
correlation. One possibility is that thickness correlation among areas
may be driven by functional associations/connectivity. The coherence
of neuronal activity in response to specific functional demands might
induce synchronized plastic changes among related regions. For exam-
ple, previous study has reported that related components of the visual
system (i.e., optic tract, lateral geniculate nucleus, and primary visual
cortex) covary in volume across individuals (Andrews et al., 1997). No-
tably, inter-regional functional connection does not necessarily predict
underlying direct diffusion connections between regions. It has been
frequently observed among cortical regions that can only be indirectly
anatomically connected (Honey et al., 2009, 2010). We therefore spec-
ulate that the observed thickness correlations that are divergent with
diffusion connectionmay reflect functional connections that have nodi-
rect anatomical connection. However, this speculation is complicated
by the fact that the AAL-defined regions in the present study may be
functionally inhomogeneous. Specific study should be conducted in
the future to test this hypothesis by comparingmorphometric networks
with functional networks in the same population. Finally, we cannot
rule out the possibility that thickness correlation is driven by neither
Fig. 9. The significant correlation of integrated regional efficiency between thickness
correlation (TCN) and diffusion networks (DN). Each circle represents one AAL region.
anatomical nor functional connections, but instead is determined by ge-
netic effects (Schmitt et al., 2008) or similarities in tissue type (Cohen et
al., 2008).

Intriguingly, the observed convergences between thickness corre-
lation and diffusion connection are overwhelmingly focused on the
positive correlations (Fig. 5c). This is compatible with the hypothesis
of trophic effect via direct axonal connections, which theoretically
should result in thickness changes in the same direction, therefore
leading to positive correlations between related regions. On the
other hand, the dramatic divergence of negative thickness correlation
from diffusion connections suggests negative thickness correlation
may be a reflection of functional connectivity between antagonistic
areas. Previous studies have consistently observed negative function-
al connectivity between areas by using functional MRI techniques. For
example, negative correlations between regions placed within the de-
fault network and regions within the dorsal attention systemwere re-
peatedly reported at the group level (Fox et al., 2005). The observed
negative correlation implies that brain systems are functionally in
competition with one another. However, the interpretation of nega-
tive correlation requires caution, given the fact that data-processing
such as global signal removal can artificially induce negative correla-
tions (Van Dijk et al., 2010). Furthermore, we found that the majority
of negative correlations of thickness (around 80%, Fig. 5b) are be-
tween bilateral heterotopic regions, while positive ones mainly link
ipsilateral or bilateral homotopic regions. This pattern of thickness
correlation is consistent with previous observations showing negative
associations of gray matter density largely between bilateral hetero-
topic regions (Mechelli et al., 2005).

Topological relation between the TCN and DN

The cerebral cortexwas further characterized as a complex network in
which each AAL region represents a network node and two nodes/areas
are considered linked if they are statistically correlated in cortical thick-
ness (i.e. TCN) or are anatomically connected (i.e. DN). The TCN and DN
capture the underlying organization of structural association and fiber
connection of the cerebral cortex, respectively. Graph theoretical analysis
provides a powerful mathematical framework for characterizing topolog-
ical properties of the complex graphs/networks and is being translated to
explore human brain networks derived frommulti-modal neuroimaging
data (Bullmore and Sporns, 2009; He and Evans, 2010). Using graph the-
oretical analysis, a small-world topology has been consistently observed
across multi-modal brain networks (morphometric correlation, diffusion
and functional networks) in previous studies (Achard et al., 2006; Gong et
al., 2009b; He et al., 2007). The small-world model theoretically supports
both specialized/modularized and integrated/distributed information
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processing and maximizes the efficiency of information transfer both
globally and locally at a relatively lowwiring cost. In the present study, al-
though both cortical networks are within the small-world regime, the
global and local efficiencies between the two networks are significantly
different (Fig. 6). While topological differences between these two
modal networks are expecteddue to the observeddivergence of thickness
correlationwithdiffusion connection, the pattern of the topological differ-
ence should be noted. Specifically, the TCNhas a significantly higher glob-
al efficiency but amuch lower local efficiency than the DN over the entire
range of sparsity, which suggests a more randomized and less modular-
ized topology of the TCN. This possibly relates to the combined effect of
the multiple factors behind cortical thickness correlation, giving rise to
more long-range paths and a more random configuration.

In addition to the overall network parameters, the regional effi-
ciency was calculated for each node in both cortical networks. This
parameter measures a node's connectivity to all other nodes of the
network and quantifies the importance of a node for the information
transfer within the network. High regional efficiency implies a hub/-
core role for that node (Achard et al., 2006). In our data, we found
that there are significant differences in hub regions for the two
modal networks (Table 1 and Fig. 8), but the majority of the hub re-
gions in both networks consistently belonged to association cortex
that plays a central role receiving inputs from multiple cortical re-
gions (Mesulam, 2000). This is consistent with the findings that cor-
tical hubs revealed by intrinsic functional connectivity are located
throughout heteromodal areas of association cortex (Achard et al.,
2006). Notably, left precuneus and superior parietal gyrus were iden-
tified as hub regions in both networks, consistent with recent findings
showing a structural core within posterior medial and parietal cortex
(Hagmann et al., 2008). Despite the difference of hub regions be-
tween thickness correlation and diffusion networks, the regional effi-
ciencies across all nodes showed statistically significant concordance
between these twomodalities (Fig. 9), suggesting an intrinsic similar-
ity of information traffic patterns in both networks. This is compatible
with previous findings that show highly correlated regional centrality
between structural and functional networks using computational ap-
proaches (Honey et al., 2007). In addition, a recent study has reported
significant covariations between the regional efficiency of diffusion
connectivity network and regional cerebral blood flow measured by
perfusion MRI (Várkuti et al., 2011), suggesting a potential role of re-
gional metabolism to the correlation of nodal efficiency between the
two modalities in the present study.

Methodological issues

Several methodological issues need to be addressed. First, while
diffusion MRI tractography has been widely employed to reconstruct
specific WM tracts among regions-of-interest, it remains imperfect to
map out all the connections accurately throughout the entire brain.
For example, current tractography algorithms may show biases
against long distance connections, which may result in the loss of
some long-range connections. In addition, diffusion tractography re-
mains a limited capacity for resolving crossing fiber bundles, account-
ing for the missing of other existing connections, e.g. between the
lateral inter-hemispheric regions. Therefore, it is important to note
that while the overall connectivity pattern has been largely captured
by the diffusion network, it has been noised to some degree, contain-
ing both false negative (i.e. missed connections) and false positive
connections (i.e. spurious connections) even after the thresholding
procedure. Future studies with more sophisticated tractography algo-
rithms or diffusion imaging techniques, as well as finer imaging reso-
lution or quality, need to be conducted to yield a more accurate
representation of the underlying brain anatomical networks. Second,
we measured the thickness correlations between cortical regions by
using Pearson full correlation. There are alternative choices such as
partial correlation, estimating the pairwise association between any
two brain regions while controlling for the effects of the other brain
regions. The comparison between diffusion connections and thick-
ness partial correlations needs to be addressed in the future. Third,
we confined the analysis to the cerebral cortical system in the current
study, given the fact that the morphometric descriptor (thickness)
can only be defined within the cerebral cortex. The sub-cortical struc-
tures such as the striatum and thalamus play important roles on the
cortical dynamics and will be included in the future, e.g. when explor-
ing other morphometric descriptors such as volume. Finally, the
thickness correlations and diffusion connections are extracted be-
tween cortical regions that are obtained from a prior atlas (AAL tem-
plate). There exist alternative strategies for the cortical parcellation
by using other templates, like Brodmman atlas. It has been demon-
strated that brain network topology depends on the scheme of brain
parcellation (Wang et al., 2009; Zalesky et al., 2010). Future studies
could be conducted to test the effect of cortical parcellation on the re-
lation between the two measures.

Conclusion

Our study revealed both substantial convergence and divergence
between cortical thickness correlation and diffusion connection
across the human cerebral cortex. Intriguingly, the agreement of pos-
itive and negative thickness correlations with diffusion connections is
quite different, suggesting that different mechanisms underlie the di-
rection of thickness correlation. Moreover, our study showed that the
thickness correlation network has a more randomized overall topolo-
gy than the diffusion network, whereas the nodal characteristics of
cortical regions in these two networks are statistically correlated.
Our findings indicate that thickness correlation contains exclusive in-
formation representing an important aspect of interregional associa-
tion/interaction, and therefore should not be simply taken as a
proxy measure for diffusion connection. The interregional correla-
tions of other morphometric descriptors such as gray matter volume
and cortical area have also been used to study brain connectivity,
which putatively characterize distinct properties of the interaction
or different aspects of the same interaction (mechanical, anatomical,
and chemical) between brain structures (Sanabria-Diaz et al., 2010).
It would be intriguing in future to explore how the interregional cor-
relation of different morphometric descriptors, anatomical connec-
tion and functional connection are related to each other, by
combining structural MRI, diffusion MRI and functional MRI for the
same population.
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